## Introduction to Offshore Wind and Insurance

Lillehammer Energy Claims conference



Kristina Nielsen, Risk and Insurance Manager 7 March 2018

## Agenda

- A bit of history
- What does an offshore wind farm look like?
- Technology development
- Construction of a wind farm
- What goes wrong?



### Where it all began...

1991:Vindeby, Denmark11 turbines – total of 4,95MW



C:\Users\KRINL\Desktop\Vindeby\_1991\_DK\_ref.mp4

2003: Nysted Offshore Wind Park, Denmark North Hoyle, Wales

2008: UK takes off – first round

#### Today:

https://www.youtube.com/watch?v=exPkb8qNY04

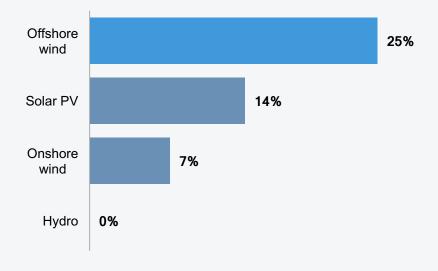
#### **Territories:**

- Denmark and UK forerunners
- Northern Europe
- Rest of Europe
- Asia
- US

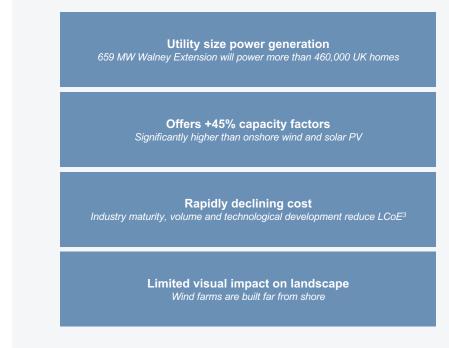
#### Technologies

- Floating turbines
- Cluster offshore transformers
- Flying turbines



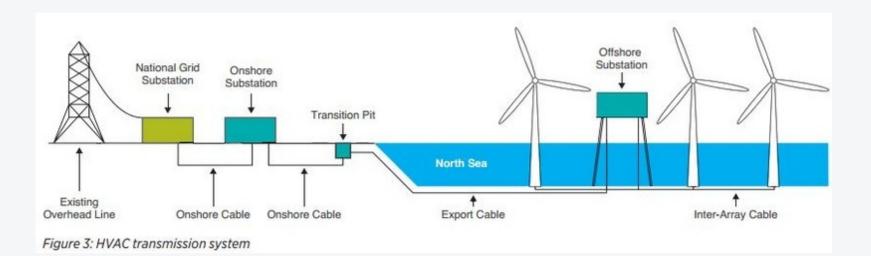





# Offshore wind is a large scale renewable technology with growth rates exceeding other renewables

Fastest growing renewable technology in OECD Installed capacity CAGR, 2014-2020




#### Offshore wind offers multiple advantages

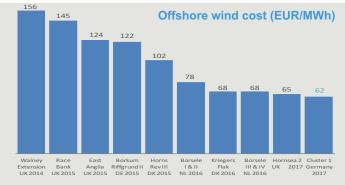




#### **Offshore wind farm structure**






### **Technological development**

#### Multiple levers to drive down cost in offshore wind

|            | Development                                         |                                                                                                                                            | Impact                                                                                                                                                                    |
|------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scale .    | <ul> <li>Turbines<br/>and rotor<br/>size</li> </ul> | 6-8 MW → +10 MW                                                                                                                            | <ul> <li>Fewer positions</li> </ul>                                                                                                                                       |
|            | <ul> <li>Sites</li> </ul>                           | 200-300 MW → +1<br>GW                                                                                                                      | <ul><li>Greater overhead<br/>leverage</li><li>Scale effects</li></ul>                                                                                                     |
|            | <ul> <li>Vessel size</li> </ul>                     | 2-4 wind turbines →<br>8 wind turbines                                                                                                     | <ul><li>Less transit time</li><li>Higher utilisation</li></ul>                                                                                                            |
|            | <ul> <li>Cable<br/>capacity</li> </ul>              | 300 MW → 400 MW                                                                                                                            | <ul><li>Fewer substations</li><li>Fewer cables</li></ul>                                                                                                                  |
|            | Eoundation                                          | Monopile → Suction                                                                                                                         | <ul> <li>Greater water depth and</li> </ul>                                                                                                                               |
|            | design                                              | bucket jackets →<br>floating                                                                                                               | <ul><li>heavier loads possible</li><li>Faster installation time</li></ul>                                                                                                 |
|            | roundation                                          | bucket jackets →                                                                                                                           | heavier loads possible                                                                                                                                                    |
|            | design                                              | bucket jackets →<br>floating                                                                                                               | <ul><li>heavier loads possible</li><li>Faster installation time</li></ul>                                                                                                 |
| Innovation | esign                                               | bucket jackets →<br>floating<br>Gearbox vs direct drive<br>AC → 2 <sup>nd</sup> generation<br>HVDC1<br>Battery<br>Single supply → Multiple | heavier loads possible<br>Faster installation time<br>Less maintenance<br>Longer distance to shore<br>Less grid loss<br>Storage<br>Broader and more<br>robust supply base |
|            | e Gearbox<br>• Electrical                           | bucket jackets →<br>floating<br>Gearbox vs direct drive<br>AC → 2 <sup>nd</sup> generation<br>HVDC1<br>Battery                             | heavier loads possible<br>Faster installation time<br>Less maintenance<br>Longer distance to shore<br>Less grid loss<br>Storage<br>Broader and more                       |

#### Rapid technological development Wind turbine rotor diameter, year of commissioning





1. High-voltage direct current transmission



### **Construction of a wind farm – special features**

- Environmental/consent issues
- Changing conditions
- Many interfaces/risk transfers many contractors
- Interfaces with external parties
- Fast technology development
- Assets are "off the shelf"
- Heavy lifts
- Many fix points
- Power cables...



## What goes wrong?

- Typical losses
  - Frequency
  - Cables and foundations
- Contractual issues
  - Contractors pushing risk onto developer
- Use of MWS
- Policy wordings
  - Interpretations vary
  - Old Marine and Welcar wording merged with Onshore wind wordings continuously being developed



### Questions

- Which assets are most often damaged during offshore wind construction projects?

A. Foundations

B. Cables

C. Turbines

D. Blades

- How many households did Vindeby provide electricity to?

A. 100

B. 2.200

C. 50.000

D. 460.000



## **Questions?**

